Like Facebook nha

Khảo sát hàm số thi đại học

Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Đức Dũng (trang riêng)
Ngày gửi: 19h:32' 22-11-2015
Dung lượng: 4.4 MB
Số lượt tải: 2
Số lượt thích: 0 người
LỜI GIỚI THIỆU

MỤC LỤC
BÀI 1: ĐƠN ĐIỆU HÀM SỐ
VẤN ĐỀ 1: Xét chiều biến thiên của hàm so
VẤN ĐỀ 2: Tìm điều kiện để hàm số luôn đồng biến hoặc nghịch biến trên tập xác định (hoặc trên từng khoảng xác định)
VẤN ĐỀ 3: Ứng dụng tính đơn điệu để chứng minh bất đẳng thức
BÀI 2: CỰC TRỊ
VẤN ĐỀ 1: Tìm cực trị của hàm số
VẤN ĐỀ 2: Tìm điều kiện để hàm số có cực trị
BÀI 3: MAX-MIN
VẤN ĐỀ 1: Tìm GTLN, GTNN của hàm số bằng cách lập bảng biến thiên
Giới thiệu sơ sơ về BĐT
BÀI 4:TIỆM CẬN
BÀI 5: KHẢO SÁT VÀ VẼ ĐỒ THỊ
BÀI 6: SỰ TƯƠNG GIAO
BÀI 7: BIẾN ĐỔI ĐỒ THỊ
BÀI 8: BIỆN LUẬN BẰNG ĐỒ THỊ
BÀI 9: PHƯƠNG TRÌNH TIẾP TUYẾN
VẤN ĐỀ 1: Lập phương trình tiếp tuyến của đường cong (C): y = f(x)
VẤN ĐỀ 2: Tìm điều kiện để hai đường tiếp xúc
BÀI 10: CÁC DẠNG ĐẶNG BIỆT
VẤN ĐỀ 1: Tìm điểm cố định của họ đồ thị (Cm): y = f(x, m)
VẤN ĐỀ 2: Tìm điểm mà không có đồ thị nào của họ đồ thị (Cm): y = f(x, m) đi qua
VẤN ĐỀ 3: Tìm điểm mà một số đồ thị của họ đồ thị (Cm): y = f(x, m) đi qua
VẤN ĐỀ 4: Tìm điểm trên đồ thị (C): y = f(x) có toạ độ nguyên
VẤN ĐỀ 5: Tìm cặp điểm trên đồ thị (C): y = f(x) đối xứng qua đường thẳng d: y = ax + b
VẤN ĐỀ 6: Đối xứng tâm-trục
VẤN ĐỀ 7: Tìm cặp điểm trên đồ thị (C): y = f(x) đối xứng qua điểm I(a; b)
VẤN ĐỀ 8: Khoảng cách
VẤN ĐỀ 9: tích














BÀI 1: ĐƠN ĐIỆU HÀM SỐ

1. Đinh nghĩa:
Hàm số f đồng biến trên K ( ((x1, x2 ( K, x1 < x2 ( f(x1) < f(x2)
Hàm số f nghịch biến trên K ( ((x1, x2 ( K, x1 < x2 ( f(x1) > f(x2)
2. Điều kiện cần:
Giả sử f có đạo hàm trên khoảng I.
a) Nếu f đồng biến trên khoảng I thì f((x) ( 0, (x ( I
b) Nếu f nghịch biến trên khoảng I thì f((x) ( 0, (x ( I
3. Điều kiện đủ:
Giả sử f có đạo hàm trên khoảng I.
a) Nếu f( (x) ( 0, (x ( I (f((x) = 0 tại một số hữu hạn điểm) thì f đồng biến trên I.
b) Nếu f( (x) ( 0, (x ( I (f((x) = 0 tại một số hữu hạn điểm) thì f nghịch biến trên I.
c) Nếu f((x) = 0, (x ( I thì f không đổi trên I.
Chú ý: Nếu khoảng I được thay bởi đoạn hoặc nửa khoảng thì f phải liên tục trên đó.
VẤN ĐỀ 1: Xét chiều biến thiên của hàm số
Để xét chiều biến thiên của hàm số y = f(x), ta thực hiện các bước như sau:
– Tìm tập xác định của hàm số.
– Tính y(. Tìm các điểm mà tại đó y( = 0 hoặc y( không tồn tại (gọi là các điểm tới hạn)
– Lập bảng xét dấu y( (bảng biến thiên). Từ đó kết luận các khoảng đồng biến, nghịch biến của hàm số.
VD: Xét chiều biến thiên của các hàm số sau:
a) 
D=R

Cho 
BBT

Vậy: hàm số đồng biến: và
Hàm số nghịch biến: 
b) 
D=R

Cho 
BBT

Vậy: hàm số luôn đồng biến trên D
c) 
D=R

Cho 
BBT

Vậy: hàm số tăng :và 
Hàm số giảm: và 
d) 
D=R

Cho 
BBT

Vậy: hàm số tăng :
Hàm số giảm: 
e) 
D=

BBT

Vậy: hàm số luôn giảm trên D
f) 
D=

Cho 
BBT
 
Gửi ý kiến

↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng RAR và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓


Khung thử code

nddung1980.violet.vn


Bình luận nhé các bạn